Skip to main content

Focal Areas of High Signal Intensity in Children with Neurofibromatosis Type 1: Expected Evolution on MRI

Fellows’ Journal Club

The authors retrospectively examined the MRI of children diagnosed with neurofibromatosis type 1 using the National Institutes of Health Consensus Criteria (1987), with imaging follow-up of at least 4 years. They recorded the number, size, and surface area of focal areas of high signal intensity according to their anatomic distribution on T2WI/T2-FLAIR sequences. A generalized mixed model was used to analyze the evolution of focal areas of high signal intensity according to age, and separate analyses were performed for girls and boys. Thirty-nine patients with a median follow-up of 7 years were analyzed. Focal areas of high signal intensity were found in 100% of patients, preferentially in the infratentorial white matter (35% cerebellum, 30% brain stem) and in the capsular lenticular region (22%). They measured 15mm in 95% of cases. The areas appeared from the age of 1 year; increased in number, size, and surface area to a peak at the age of 7; and then spontaneously regressed by 17 years of age. The authors conclude that the study suggests that the evolution of focal areas of high signal intensity is not related to puberty and has a peak at the age of 7 years.

Abstract

Figure 3 from Calvez et al
Temporal evolution of FASI on T2-FLAIR-weighted images. Axial T2-FLAIR sequences show capsular lenticular (A) and infratentorial white matter (C) FASI in a 6-year-old patient, then follow-up MR imaging in a 10-year-old patient with almost complete disappearance of these FASI (B and D).

BACKGROUND AND PURPOSE

Focal areas of high signal intensity are T2WI/T2-FLAIR hyperintensities frequently found on MR imaging of children diagnosed with neurofibromatosis type 1, often thought to regress spontaneously during adolescence or puberty. Due to the risk of tumor in this population, some focal areas of high signal intensity may pose diagnostic problems. The objective of this study was to assess the characteristics and temporal evolution of focal areas of high signal intensity in children with neurofibromatosis type 1 using long-term follow-up with MR imaging.

MATERIALS AND METHODS

We retrospectively examined the MRIs of children diagnosed with neurofibromatosis type 1 using the National Institutes of Health Consensus Criteria (1987), with imaging follow-up of at least 4 years. We recorded the number, size, and surface area of focal areas of high signal intensity according to their anatomic distribution on T2WI/T2-FLAIR sequences. A generalized mixed model was used to analyze the evolution of focal areas of high signal intensity according to age, and separate analyses were performed for girls and boys.

RESULTS

Thirty-nine patients (ie, 285 MR images) with a median follow-up of 7 years were analyzed. Focal areas of high signal intensity were found in 100% of patients, preferentially in the infratentorial white matter (35% cerebellum, 30% brain stem) and in the capsular lenticular region (22%). They measured 15 mm in 95% of cases. They appeared from the age of 1 year; increased in number, size, and surface area to a peak at the age of 7; and then spontaneously regressed by 17 years of age, similarly in girls and boys.

CONCLUSIONS

Focal areas of high signal intensity are mostly small (<15 mm) abnormalities in the posterior fossa or capsular lenticular region. Our results suggest that the evolution of focal areas of high signal intensity is not related to puberty with a peak at the age of 7 years. Knowledge of the predictive evolution of focal areas of high signal intensity is essential in the follow-up of children with neurofibromatosis type 1.

Read this article: https://bit.ly/333d5k3

The post Focal Areas of High Signal Intensity in Children with Neurofibromatosis Type 1: Expected Evolution on MRI appeared first on AJNR Blog.



from AJNR Blog https://ift.tt/3mWP71O

Comments

Popular posts from this blog

Menopause Symptoms Reduced by Cold Water Swimming

Cold water swimming significantly eases menopausal symptoms. Surveying 1114 women, with 785 experiencing menopause, researchers found improvements in anxiety, mood swings, low mood, and hot flushes among participants. from Neuroscience News https://ift.tt/9AqHsEa

UPI: Kids with psych disorders most likely to take dangerous viral challenges

The “choking game” — and other clearly ill-advised and dangerous internet challenges — leave many parents wondering what drives teens to take the bait and participate. Now, a new study suggests that an underlying psychological disorder may be one reason why some kids jump at online dares such as the “Bird Box” challenge, where people walk around blindfolded, and the Tide Pod challenge, daring people to eat laundry detergent. (January 28, 2019) Read the full article here from Brain Health Daily http://bit.ly/2DIWHbD

The emerging influential role of microglia in neurology

In her most catchily titled book, The Angel and the Assassin , Donna Jackson Nakazawa highlighed nerve cells which have hitherto been very little acknowledged – microglia . Long ignored as bit players in the big league of the nervous system, Nakazawa colourfully illustrated what many neuroscientists are beginning to realise: the small size of microglia belies their huge influence ; m icroglia are, after all, the defence force of the nervous system, protecting the brain from microbial invaders . In keeping with their small size, their role is to surreptitiously  present the antigens of invading bugs to T cells , the toffs who actually carry out the final hatchet job . It is therefore not surprising that any dysfunction of microglia will come with significant clinical consequences .  By GerryShaw – Own work , CC BY-SA 3.0 , Link The most important clinical fallout of dysfunctional microglia appears to be the emergence of dementia. It is indeed spec...