Skip to main content

Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions

imagePurpose of review Optic neuropathies refer to a collection of diseases in which retinal ganglion cells (RGCs), the specialized neuron of the retina whose axons make up the optic nerve, are selectively damaged. Blindness secondary to optic neuropathies is irreversible as RGCs do not have the capacity for self-renewal and have a limited capacity for self-repair. Numerous strategies are being developed to either prevent further RGC degeneration or replace the cells that have degenerated. In this review, we aim to discuss known limitations to regeneration in central nervous system (CNS), followed by a discussion of previous, current, and future strategies for optic nerve neuroprotection as well as approaches for neuro-regeneration, with an emphasis on developments in the past two years. Recent findings Neuro-regeneration in the CNS is limited by both intrinsic and extrinsic factors. Environmental barriers to axon regeneration can be divided into two major categories: failure to clear myelin and formation of glial scar. Although inflammatory scars block axon growth past the site of injury, inflammation also provides important signals that activate reparative and regenerative pathways in RGCs. Neuroprotection with neurotrophins as monotherapy is not effective at preventing RGC degeneration likely secondary to rapid clearance of growth factors. Novel approaches involve exploiting different technologies to provide sustained delivery of neurotrophins. Other approaches include application of anti-apoptosis molecules and anti-axon retraction molecules. Although stem cells are becoming a viable option for generating RGCs for cell-replacement-based strategies, there are still many critical barriers to overcome before they can be used in clinical practice. Adjuvant treatments, such as application of electrical fields, scaffolds, and magnetic field stimulation, may be useful in helping transplanted RGCs extend axons in the proper orientation and assist with new synapse formation. Summary Different optic neuropathies will benefit from neuro-protective versus neuro-regenerative approaches. Developing clinically effective treatments for optic nerve disease will require a collaborative approach that not only employs neurotrophic factors but also incorporates signals that promote axonogenesis, direct axon growth towards intended targets, and promote appropriate synaptogenesis.

from Current Opinion in Neurology - Current Issue https://ift.tt/2NzHuy5

Comments

Popular posts from this blog

Menopause Symptoms Reduced by Cold Water Swimming

Cold water swimming significantly eases menopausal symptoms. Surveying 1114 women, with 785 experiencing menopause, researchers found improvements in anxiety, mood swings, low mood, and hot flushes among participants. from Neuroscience News https://ift.tt/9AqHsEa

UPI: Kids with psych disorders most likely to take dangerous viral challenges

The “choking game” — and other clearly ill-advised and dangerous internet challenges — leave many parents wondering what drives teens to take the bait and participate. Now, a new study suggests that an underlying psychological disorder may be one reason why some kids jump at online dares such as the “Bird Box” challenge, where people walk around blindfolded, and the Tide Pod challenge, daring people to eat laundry detergent. (January 28, 2019) Read the full article here from Brain Health Daily http://bit.ly/2DIWHbD

The emerging influential role of microglia in neurology

In her most catchily titled book, The Angel and the Assassin , Donna Jackson Nakazawa highlighed nerve cells which have hitherto been very little acknowledged – microglia . Long ignored as bit players in the big league of the nervous system, Nakazawa colourfully illustrated what many neuroscientists are beginning to realise: the small size of microglia belies their huge influence ; m icroglia are, after all, the defence force of the nervous system, protecting the brain from microbial invaders . In keeping with their small size, their role is to surreptitiously  present the antigens of invading bugs to T cells , the toffs who actually carry out the final hatchet job . It is therefore not surprising that any dysfunction of microglia will come with significant clinical consequences .  By GerryShaw – Own work , CC BY-SA 3.0 , Link The most important clinical fallout of dysfunctional microglia appears to be the emergence of dementia. It is indeed spec...