The brain is the most enigmatic structure in the universe. But every now and then, the brain malfunctions. And just like Humpty Dumpty, we struggle to put it back together again…at least not to its previous level of complex organisation. But we are remarkably ingenious creatures, obviously because we possess great brains, and we are ever-inventing brilliant schemes to fix the brain (or at least our brains are). And we, or our brains, often conjure up unthinkable technologies (pardon the intended pun!) Over the years this blog has tried to keep up with these improbable schemes, and you can check the veracity of this claim by looking up two of my very old blog posts on this:
6 exciting neuroscience discoveries that will shape neurology
10 remarkable breakthroughs that will change neurology.
But the developments keep rolling in, so here are 7 remarkable technologies shaping the future of the brain.
Artificial neurones
What if you could just replace your damaged nerves with spare neurones-just as you would replace a faulty spark plug in your car (OK, wrong analogy for many people I know). Well, this may not be a fantasy for too long. This comes from a piece in Popular Science titled Artificial neurones could replace some real ones in your brain. The article says “Swedish researchers have developed a synthetic neuron that is able to communicate chemically with organic neurones, which could change the neural pathways and better treat neurological disorders”. This is just understandable enough for most people and I will go no further. But if you desire the hard science version, with references to biomimetic neurones, (or is it neurons?), you may check out the original study in the journal Biosensors and Bioelectronics ; it does come with a slightly shorter and less convoluted, but totally undecipherable title, An organic electronic biomimetic neuron enables auto-regulated neuromodulation. I will stick to the Popular Science version.
Bionic memory
One major disorder everyone fears is dementia. The concept of forgetting, not just your experiences but family, friends, and eventually yourself, is frightening. But what if you could rely on an electronic memory. A start in this direction was a report that researchers have built a nano memory cell that mimics the way humans lay down memory. At 10,000 sizes smaller than a human hair, such an external memory will surely prove useful. But just take a breath and imagine what it will be like to be incapable of forgetting! Solomon Shereshevsky on my mind. Some way to go yet. This story is sourced from the website Mashable but the research itself is published in the journal Advanced Functional Materials with the, again, cryptic title Donor‐induced performance tuning of amorphous SrTiO3 memristive nanodevices: multistate resistive switching and mechanical tunability. Stick to the translated version in Mashable.
Memory implants
Most people do not want extraordinary memories and would just want to access the ones they have laid down. Some of these are however buried so deep in the crypts of their brains, they have become inaccessible. Again, technology may have something to promise them. And this comes in the form of a memory boosting brain implant. This device, developed by US Defence scientists, can detect how we retrieve memory, and predict when this will fail, and kick in to action to save the day. A sort of brain pacemaker you may say. The potential benefit is in head injury, but we can all do with a little help every now and then, when the ‘uhms’ and the ‘aahs’ kick in. This piece comes from Science Alert but the original article is on the website of the Defence Advanced Research Project Agency (DARPA), and it is titled Targeted Electrical Stimulation of the Brain Shows Promise as a Memory Aid. Not a bad one this time.
Neural prosthetics
Another technology promising to help memory is neural prosthetics. These serve to directly send our short-term memories into long-term storage, bypassing the hippocampus when it is too defective to do the job properly. This comes from a piece in Science Daily titled Scientists to bypass brain damage by re-encoding memories. What the prosthesis does is “to bypass a damaged hippocampal section and provide the next region with the correctly translated memory”. In effect it will make the hippocampus redundant. I’m sure the hippocampus does other things apart from encode memories… but we don’t want to think of that now.
Thought-evoked movements
Imagine being able to move a robotic limb by just thinking about it. No, not telepathy, but with your brain wired to the limb. This is what a prosthetic technology promises for people with brain damage who are unable to move. The prosthetic is implanted in the part of the brain that initiates our intention to move. The source for this story comes from USC News, and it is titled Neural prosthetic device yields fluid motions by robotic arm. In the example cited in the piece, the surgeons “implanted a pair of small electrode arrays in two parts of the posterior parietal cortex-one that controls reach and another that controls grasp“. You have to see the robotic arm in action. Sci-fi is becoming reality in a brain lab near you soon.
Behavioural remote control
Press a button and alter behaviour. Exciting and scary at the same time. But this is what chemogenetics promises, or threatens, depending on your point of view. This one comes from a piece on the website Neuroscience News titled Chemogenetics technique turns mouse behaviour on and off. The technique “achieves remote control by introducing a synthetic brain chemical messenger system that integrates with the workings of naturally-occurring systems”. ‘Integrate’ feels a tad extreme, almost like being assimilated by the Borg. But I suppose it will be no worse than the antipsychotics and sedatives we currently use to control the behaviour of people with schizophrenia and addictive disorders. It surely looks like it has potential, at least in mice for now.
Cognitive enhancement
This technology goes beyond just increasing the ability to preserve or retrieve memory. It sets out to make the brain smarter. This piece comes from The Atlantic and is titled Why cognitive enhancement is in your future (and your past). The technology is transcranial direct current stimulation (TDCS) of the deeper reaches of the brain, using electrodes to send small and painless electrical currents. The currents are thought to increase neuroplasticity, and this enables neurons (or perhaps neurones?) to form the connections necessary for learning.
***
It is mind-boggling enough just thinking that people out there are thinking of stuff like these! But it is equally reassuring that the future of the brain is bright.
from The Neurology Lounge https://ift.tt/34N3Phs
Comments
Post a Comment