Skip to main content

Prolonged Microgravity Affects Human Brain Structure and Function

Editor’s Choice

Brain MR imaging scans of National Aeronautics and Space Administration astronauts were retrospectively analyzed to quantify pre- to postflight changes in brain structure. Local structural changes were assessed using the Jacobian determinant. Structural changes were compared with clinical findings and cognitive and motor function. Long-duration spaceflights aboard the International Space Station, but not short-duration Space Shuttle flights, resulted in a significant increase in the percentage of total ventricular volume change (10.7% versus 0%). The percentage of total ventricular volume change was significantly associated with mission duration but negatively associated with age. Pre- to postflight structural changes of the left caudate correlated significantly with poor postural control, and the right primary motor area/midcingulate correlated significantly with a complex motor task completion time. These findings suggest that brain structural changes are associated with changes in cognitive and motor test scores and with the development of spaceflight-associated neuro-optic syndrome.

Abstract

BACKGROUND AND PURPOSE

Figure 2 from Roberts et al
Spaceflight results in crowding of brain tissue at the vertex. Red voxels indicate regions along the brain surface where there was an increase in brain parenchyma pre- to postflight due to crowding of the brain tissue as the brain shifted upwards. Blue voxels indicate displaced brain tissue that occurred predominantly along the margins of the lateral and third ventricles due to enlargement of the ventricles postflight.

Widespread brain structural changes are seen following extended spaceflight missions. The purpose of this study was to investigate whether these structural changes are associated with alterations in motor or cognitive function.

MATERIALS AND METHODS

Brain MR imaging scans of National Aeronautics and Space Administration astronauts were retrospectively analyzed to quantify pre- to postflight changes in brain structure. Local structural changes were assessed using the Jacobian determinant. Structural changes were compared with clinical findings and cognitive and motor function.

RESULTS

Long-duration spaceflights aboard the International Space Station, but not short-duration Space Shuttle flights, resulted in a significant increase in total ventricular volume (10.7% versus 0%, P < .001, n = 12 versus n = 7). Total ventricular volume change was significantly associated with mission duration (r = 0.72, P = .001, n = 19) but negatively associated with age (r = −0.48, P = .048, n = 19). Long-duration spaceflights resulted in significant crowding of brain parenchyma at the vertex. Pre- to postflight structural changes of the left caudate correlated significantly with poor postural control; and the right primary motor area/midcingulate correlated significantly with a complex motor task completion time. Change in volume of 3 white matter regions significantly correlated with altered reaction times on a cognitive performance task (bilateral optic radiations, splenium of the corpus callosum). In a post hoc finding, astronauts who developed spaceflight-associated neuro-ocular syndrome demonstrated smaller changes in total ventricular volume than those who did not (12.8% versus 6.5%, n = 8 versus n = 4).

CONCLUSIONS

While cautious interpretation is appropriate given the small sample size and number of comparisons, these findings suggest that brain structural changes are associated with changes in cognitive and motor test scores and with the development of spaceflight-associated neuro-optic syndrome.

Read this article: http://bit.ly/37tjmpg

The post Prolonged Microgravity Affects Human Brain Structure and Function appeared first on AJNR Blog.



from AJNR Blog https://ift.tt/2OLoNqO

Comments

Popular posts from this blog

Menopause Symptoms Reduced by Cold Water Swimming

Cold water swimming significantly eases menopausal symptoms. Surveying 1114 women, with 785 experiencing menopause, researchers found improvements in anxiety, mood swings, low mood, and hot flushes among participants. from Neuroscience News https://ift.tt/9AqHsEa

UPI: Kids with psych disorders most likely to take dangerous viral challenges

The “choking game” — and other clearly ill-advised and dangerous internet challenges — leave many parents wondering what drives teens to take the bait and participate. Now, a new study suggests that an underlying psychological disorder may be one reason why some kids jump at online dares such as the “Bird Box” challenge, where people walk around blindfolded, and the Tide Pod challenge, daring people to eat laundry detergent. (January 28, 2019) Read the full article here from Brain Health Daily http://bit.ly/2DIWHbD

The emerging influential role of microglia in neurology

In her most catchily titled book, The Angel and the Assassin , Donna Jackson Nakazawa highlighed nerve cells which have hitherto been very little acknowledged – microglia . Long ignored as bit players in the big league of the nervous system, Nakazawa colourfully illustrated what many neuroscientists are beginning to realise: the small size of microglia belies their huge influence ; m icroglia are, after all, the defence force of the nervous system, protecting the brain from microbial invaders . In keeping with their small size, their role is to surreptitiously  present the antigens of invading bugs to T cells , the toffs who actually carry out the final hatchet job . It is therefore not surprising that any dysfunction of microglia will come with significant clinical consequences .  By GerryShaw – Own work , CC BY-SA 3.0 , Link The most important clinical fallout of dysfunctional microglia appears to be the emergence of dementia. It is indeed spec...