Skip to main content

The congenital myasthenic syndromes: expanding genetic and phenotypic spectrums and refining treatment strategies

imagePurpose of review Congenital myasthenic syndromes (CMS) are a group of heterogeneous inherited disorders caused by mutations in genes encoding proteins whose function is essential for the integrity of neuromuscular transmission. This review updates the reader on the expanding phenotypic spectrum and suggested improved treatment strategies. Recent findings As next-generation sequencing is taken into the clinic, its use is both continuing to unearth new causative genes in which mutations underlie CMS and also broadening the phenotypic spectrum for known CMS genes. The number of genes in which mutations may cause neuromuscular transmission defects has now passed 30. The defective transmission may be part of an overall more complex phenotype in which there may be muscle, central nervous system or other involvement. Notably, mutations in series of genes encoding proteins located in the presynatic motor bouton have been identified. Rare cases of mutations in basal laminar proteins of the synaptic cleft are coming to light and additional mutations/phenotypic features have been located in some of the larger neuromuscular junction proteins such as AGRN and MUSK, where previously mutation screening by sanger sequencing was time consuming and costly. Finally, there are more reports of the beneficial effects of treatment with β2-adrenergic receptor agonists in patients, and the study of their action in disease models. Summary Recent studies of the CMS illustrate the increasing complexity of the genetics and pathophysiological mechanisms involved. With therapy tailored for the underlying disease mechanism treatment, although incomplete, is usually life-transforming. However, treatment for newly identified conditions in which myasthenia is only one component within complex multisystem disorder will prove challenging.

from Current Opinion in Neurology - Current Issue https://ift.tt/2L3EpFS

Comments

Popular posts from this blog

Menopause Symptoms Reduced by Cold Water Swimming

Cold water swimming significantly eases menopausal symptoms. Surveying 1114 women, with 785 experiencing menopause, researchers found improvements in anxiety, mood swings, low mood, and hot flushes among participants. from Neuroscience News https://ift.tt/9AqHsEa

Handwriting Boosts Brain Connectivity and Learning

Handwriting, compared to typing, results in more complex brain connectivity patterns, enhancing learning and memory. This study used EEG data from 36 students to compare brain activity while writing by hand and typing. from Neuroscience News https://ift.tt/0bklQBj

More Education, Longer Life: Global Study Reveals Link

A new study reveals that higher education levels significantly reduce the risk of death, regardless of age, sex, location, or background. Researchers found that each additional year of education decreases death risk by two percent, with 18 years of education lowering it by 34 percent. from Neuroscience News https://ift.tt/oeK38Fk