Skip to main content

The congenital myasthenic syndromes: expanding genetic and phenotypic spectrums and refining treatment strategies

imagePurpose of review Congenital myasthenic syndromes (CMS) are a group of heterogeneous inherited disorders caused by mutations in genes encoding proteins whose function is essential for the integrity of neuromuscular transmission. This review updates the reader on the expanding phenotypic spectrum and suggested improved treatment strategies. Recent findings As next-generation sequencing is taken into the clinic, its use is both continuing to unearth new causative genes in which mutations underlie CMS and also broadening the phenotypic spectrum for known CMS genes. The number of genes in which mutations may cause neuromuscular transmission defects has now passed 30. The defective transmission may be part of an overall more complex phenotype in which there may be muscle, central nervous system or other involvement. Notably, mutations in series of genes encoding proteins located in the presynatic motor bouton have been identified. Rare cases of mutations in basal laminar proteins of the synaptic cleft are coming to light and additional mutations/phenotypic features have been located in some of the larger neuromuscular junction proteins such as AGRN and MUSK, where previously mutation screening by sanger sequencing was time consuming and costly. Finally, there are more reports of the beneficial effects of treatment with β2-adrenergic receptor agonists in patients, and the study of their action in disease models. Summary Recent studies of the CMS illustrate the increasing complexity of the genetics and pathophysiological mechanisms involved. With therapy tailored for the underlying disease mechanism treatment, although incomplete, is usually life-transforming. However, treatment for newly identified conditions in which myasthenia is only one component within complex multisystem disorder will prove challenging.

from Current Opinion in Neurology - Current Issue https://ift.tt/2L3EpFS

Comments

Popular posts from this blog

Menopause Symptoms Reduced by Cold Water Swimming

Cold water swimming significantly eases menopausal symptoms. Surveying 1114 women, with 785 experiencing menopause, researchers found improvements in anxiety, mood swings, low mood, and hot flushes among participants. from Neuroscience News https://ift.tt/9AqHsEa

UPI: Kids with psych disorders most likely to take dangerous viral challenges

The “choking game” — and other clearly ill-advised and dangerous internet challenges — leave many parents wondering what drives teens to take the bait and participate. Now, a new study suggests that an underlying psychological disorder may be one reason why some kids jump at online dares such as the “Bird Box” challenge, where people walk around blindfolded, and the Tide Pod challenge, daring people to eat laundry detergent. (January 28, 2019) Read the full article here from Brain Health Daily http://bit.ly/2DIWHbD

The emerging influential role of microglia in neurology

In her most catchily titled book, The Angel and the Assassin , Donna Jackson Nakazawa highlighed nerve cells which have hitherto been very little acknowledged – microglia . Long ignored as bit players in the big league of the nervous system, Nakazawa colourfully illustrated what many neuroscientists are beginning to realise: the small size of microglia belies their huge influence ; m icroglia are, after all, the defence force of the nervous system, protecting the brain from microbial invaders . In keeping with their small size, their role is to surreptitiously  present the antigens of invading bugs to T cells , the toffs who actually carry out the final hatchet job . It is therefore not surprising that any dysfunction of microglia will come with significant clinical consequences .  By GerryShaw – Own work , CC BY-SA 3.0 , Link The most important clinical fallout of dysfunctional microglia appears to be the emergence of dementia. It is indeed spec...